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Remote sensing allows for the quantification of global tropical deforestation with high 

spatial resolution
1,2

. This in-depth mapping enabled us to achieve substantial advances 

in the analysis of continental-wide fragmentation of tropical forests
1-4

. We identified 

roughly 130 million forest fragments in three continents that show surprisingly similar 

power law size and perimeter distributions as well as fractal dimensions. Power law 

distributions
5-7

 have been observed in many natural phenomena
8,9

 such as wild fires, 

landslides and earth quakes. The principles of percolation theory
7,10,11

 provide one 

explanation for the observed patterns and suggest that forest fragmentation is close to 

the critical point of percolation. Simulation modelling supports this hypothesis. The 

observed patterns do not only emerge from random deforestation which can be 

described by percolation theory
10,11

 but also from a wide range of deforestation and 

forest recovery regimes. Predictions of our models outline that additional forest loss will 

strongly increase the total number of forest fragments (maximum by factor 33 over 50 

years while decreasing their size), and that this consequence can be partly mitigated by 

reforestation and forest protection.  

 

Tropical forests play a key role in the global carbon cycle
12

 and harbour more than half of the 

species worldwide
13

. Increases in agriculture, logging and urban growth during the past 

decades caused unprecedented losses of tropical forest
14,15

 with annual deforestation rates 

reaching about 0.5% since the 1990’s
1
. Deforestation rates differ between continents

1
 with hot 

spots mainly concentrated in Asia
14

 and Brazil
14 

(Tab. 1). A reduction of forested area goes 

hand in hand with fragmentation where forest patches split up into several smaller ones
16

. The 

increasing availability of high-resolution satellite imagery now allows for in-depth mapping 

of global deforestation
1-4

 and for a detailed analysis of the spatial pattern of the remaining 

forest.  

 

Table 1: Derived features of continental-scale fragmentation of tropical forests. All 

features were calculated based on a high-resolution forest cover map
2
. 

 America
a
 Africa

a
 Asia-Australia

a
 Theory

f
 

Forest area (Mha) 940 577 391  

Number of fragments (N) 55,558,018 44,851,251 30,556,204  

Mean (median) size of fragments (ha) 17 (0.09) 13 (0.09) 13 (0.09)  

Forest area (%) of fragments < 10,000 ha 11.2 9.9 9.2  

Fragment size scaling
b,c

 (τ)
 
 1.90 1.98 1.92 2.05 

Fractal dimension
b,d

 (df) 1.92 1.87 1.87 1.89 

Perimeter scaling
b,e 

(κ) 2.16 2.23 2.21 2.14 
a
Annual gross deforestation rates

1
 of 0.51% (America), 0.37% (Africa) and 0.62% (Asia-Australia) for years 

2000-2010.  
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b
See Methods for details. The term ‘scaling’ refers to the exponent of the fitted power law distributions. The 

calculation of fragment size and perimeter scaling is based on n = 55.5 million (America), n = 44.8 million 

(Africa) and n = 30.5 million (Asia-Australia) fragments. 

c
Pearson’s correlation coefficients (R) and standard errors (ε) are: R² = 0.96 and ε = 0.0011 (America), R² = 

0.956 and ε = 0.0017 (Africa), R² = 0.958 and ε = 0.0022 (Asia-Australia). Deviations from the theoretical 

expectation trace back to the finite area of the continents.  

d
The fractal dimension is based on the analysis of n = 8 different grid sizes, see Methods for details. The estimate 

of the fractal dimension is not affected by landscape area.  

e
Pearson’s correlation coefficients (R) and standard errors (ε) are: R² = 0.952 and ε = 0.00082 (America), R² = 

0.931 and ε = 0.0011 (Africa), R² = 0.938 and ε = 0.0015 (Asia-Australia).  

f
Theoretical values according to percolation theory

10,11
 (near the critical point).  

 

Here we used percolation theory
10,11

 as a framework for analysing current fragmentation 

structures in tropical and sub-tropical America, Africa and Asia-Australia on a high-resolution 

forest cover map
2
 (approx. 21 billion pixels, each 30 m × 30 m). Based on a clustering 

algorithm, we counted and analysed the size and perimeter distribution of all detectable forest 

fragments separately for each continent, and determined the fractal dimension of the 

fragmented landscape (Tab. 1). In total, we identified more than 130 million forest fragments 

across all continents ranging in size over eleven orders of magnitude up to 427 Mha. South 

America’s largest forest fragment in the Amazon spans about 45% of its total forest area, 

whereas the largest fragment on Borneo in Asia covers only 18% of the forest.  

 

We expected largely different fragmentation structures among continents due to different land 

use practices
14

. Unexpectedly, we observed strikingly similar fragment size distributions (Fig. 

1) that could be described by power laws
5-7

 with almost identical exponents (Tab. 1). About 

10% of continental forest area is made up of forest fragments smaller than 10,000 ha (11.2% 

for America, 9.9% for Africa and 9.2% for Asia-Australia). Additionally, the fractal 

dimensions of forest cover are similar for all three continents with values of approximately 

1.9 (Tab. 1). To analyse the shape of fragments we determined the fragment perimeter 

distributions and again, found for all three continents power law behaviour with similar 

exponents close to 2.2 (Tab. 1, Extended Data Fig. 1). Our results raise the question why 

varying patterns of local deforestation produce such remarkably similar fragmentation 

patterns at the continental scale.  
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Figure 1: Continental-scale fragment size distribution of tropical and sub-tropical 

forests. Observed fragment size distribution (green dots, fragment sizes ≥ 10 ha) for a, 

America (n = 55.5 million fragments), b, Africa (n = 44.8 million fragments) and c, Asia-

Australia (n = 30.5 million fragments), and fit of a power law distribution with exponent τ 

(solid line). The world map shows the selected tropical regions in green. Fragment sizes were 

estimated from Hansen’s vegetation cover map
2
.  

 

Percolation theory
10,11 

provides one possible explanation for the observed patterns. To briefly 

introduce the theory, imagine the cells of a landscape to be occupied with probability p by 

forest. Occupied cells, that share at least one side of a cell, form a forest fragment (also called 

‘cluster’). If p is large, the landscape is dominated by one large fragment spanning across the 

whole area (Extended Data Fig. 2a). However, for lower probabilities p the forest landscape is 

divided into smaller fragments, but still one large fragment exists that connects one side of the 

landscape with the other (the ‘spanning cluster’). Note that the spanning cluster can show 

complex shapes with larger holes
11

 (Extended Data Fig. 2b). When the probability p drops to 

a certain level (p ≈ pc = 0.59, equal to 59% forest area for large landscapes), the spanning 

cluster dissects and larger fragments disappear (Extended Data Fig. 2c, d).  

 

The phases of fragmentation below and above a forest cover of 59% are defined as subcritical 

and supercritical, respectively, while the value of pc = 0.59 itself represents the critical point 

of percolation where the large-scale behaviour of the system can be described by simple 

mathematical relationships
11,17

. For example, percolation theory predicts that the size 

distribution of fragments can be described by a power law with an exponent of τ ≈ 2.05 at the 

critical point (for infinite landscapes
10,11

). Interestingly, the empirical exponents of the forest 

cover map agree with the theory (τ between 1.9 and 2.0, Tab. 1). At the critical point, the 
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exponent of the fragment size distribution τ is further related to the fractal dimension df (via 

the hyperscaling relationship
11,18,19

 τ = 1 + 2/df). Theory predicts a fractal dimension of df = 

1.89 (at the critical point
11

) which is in agreement with df values determined for the high-

resolution forest cover map (1.92 for America and 1.87 for Africa and Asia-Australia, Tab. 1). 

Additionally, the perimeter distributions show power laws in agreement with the theoretical 

exponent
20

 of κ ≈ 2.14 (Tab. 1). Such critical exponents are often finger-prints of a system's 

hidden dynamics
7,9,21

.  

 

 

 

Figure 2: Dynamics of tropical forest fragmentation in America. Fragment size 

distributions (green bars: FRAG simulation, line: observation from remote sensing, fragment 

sizes ≥ 10 ha) and spatial patterns of fragments for different snapshots in time a, at the early 

phase, b, near the critical point of percolation and c, beyond. Shown is for each phase a map 

of a selected sub-area of 225 ha (FRAG, cleared sites are white and colours indicate different 

fragment sizes). Snapshots and a video are provided in Extended Data Fig. 3 and 

Supplementary Video 1.  

 

Our empirical findings suggest that the observed tropical forest fragmentation is at all three 

continents near the critical point of percolation (reference year 2000). To test this hypothesis 

and to explore future dynamics, we developed and analysed three dynamic fragmentation 

models (FRAG, FRAG-B, FRAG-P). In FRAG, which corresponds to classical percolation 

theory
11

, local forest sites are cleared randomly and independently each year
22,23

 (Fig. 2, 

Extended Data Fig. 3, Supplementary Video 1). Deforestation happens across a landscape 

initially covered by forest. FRAG-B and FRAG-P were used to test our findings with respect 

to more complex deforestation and reforestation patterns as well as forest protection (see 

Methods for details). We analysed the dynamics of forest fragmentation for each continent 

and kept track of all forest fragments emerging during time. In total, approximately 3 Gha of 

forest area was simulated (33 billion cells of resolution 30 m × 30 m).  
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Figure 3: Percolation theory applied to observed forest fragmentation. a, Dynamics of 

the number of forest fragments (green line, linear scale) and mean fragment size (blue line, 

linear scale) with decreasing forest area (%) as observed by remote sensing (dots) and 

simulated by the fragmentation model FRAG (solid lines) for America. b, Number of 

fragments and their mean size show nonlinear behaviour for all three continents (solid lines: 

FRAG simulations, dots: observations from remote sensing). c, Application of percolation 

theory to project future forest fragmentation for different scenarios in America using FRAG 

(see Methods for details of scenarios S1–S4).  

 

The dynamics of forest fragmentation as simulated by the FRAG model predict the 

empirically observed fragment size distributions (Fig. 2b). Forest removal beyond the critical 

point revealed a hump-shaped development of the numbers of fragments
24

 (Fig. 3a, b). Below 

the critical point the number of fragments is rising slowly but accelerates strongly afterwards 

(maximum of 2000 million fragments for tropical America, Fig. 3a). The currently observed 

number of fragments and their mean size also matches those predicted by the FRAG model 

near the critical point (Fig. 3a, b). Though, small additional amounts of forest loss in the near 

future would lead to a strong increase in the number of forest fragments. We obtain similar 

trends for Africa and Asia-Australia (Fig. 3b). 

 

We used the FRAG model to explore how forest fragmentation would proceed in the next 

decades based on our suggested explanation for the observed fragmentation patterns. Under 
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constant deforestation (0.51% per year in America
1
 without any reforestation), the number of 

forest fragments will explode (maximum by factor 33 over 50 years, scenario S1 in Fig. 3c, 

Extended Data Fig. 4a, e) while mean fragments’ sizes decrease (from 17 ha to 0.25 ha in 

scenario S1, Fig. 3a, Extended Data Fig. 4a, e). To assess how reduced deforestation and 

reforestation may mitigate these effects, we analysed additional scenarios (Fig. 3c, Extended 

Data Fig. 4b–e). For example, considering reforestation (0.14% per year in America
1
) reduces 

the deforestation rate only slightly and still would lead to an increase of fragment number by 

factor 28 until 2050 (scenario S2 in Fig. 3c). The same would arise for a yearly reduction in 

deforestation rate (derived from ref. 2) where the projected increase of fragment number is 

limited to factor 27 until 2050 (scenario S3 in Fig. 3c). Only efforts that increasingly reduce 

deforestation rates in combination with reforestation (e.g., by 0.01%/year
2
) would lead to 

rising forest cover and decreasing fragment numbers after 20 to 30 years (scenario S4 in Fig. 

3c). Such mitigation scenarios are important aspects for an assessment of forest 

fragmentation. While Europe, North America and parts of Asia experienced higher 

reforestation than deforestation during the last centuries
25,26

, forest loss still exceeds forest 

gain in most tropical countries
2,26

 like Brazil, Indonesia and Cameroon.  

 

Trends in both – increasing fragment numbers and decreases in their size – have important 

consequences for species habitats
3,27,28

 and forest fragment edges
16,27

 (Extended Data Fig. 4). 

They negatively impact biodiversity
16,27

 by reducing fragments’ connectivity and by 

enhancing edge effects. In addition, recent studies outlined that elevated tree mortality
16

 in the 

edge area of forest fragments will lead to additional carbon emissions
29

. Effective policies and 

regulations for preventing negative effects of fragmentation thus require robust indicators. 

The development of indicators is an important challenge of environmental science, especially 

given the possibility that critical transitions of global ecosystems may occur due to human 

land transformations
30

.  

 

To test our results with respect to more complex spatial regimes of deforestation (FRAG-B 

model), we simulated deforestation to occur with probability dborder at the border of already 

existing forest fragments and at random locations otherwise (Extended Data Fig. 5, 

Supplementary Video 2). In terms of criticality, the FRAG-B model showed similar behaviour 

as the classical percolation model (FRAG) – for nearly the entire range of the parameter dborder 

(critical point at pc = 0.59 with τ ≈ 2, Extended Data Fig. 6). In addition, border deforestation 

further widens the range of forest area where power law behaviour with exponent τ ≈ 2 occurs 
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(Extended Data Fig. 7). Reforestation (e.g., 0.14% per year in America
1
) is already well 

captured by our FRAG and FRAG-B models by lowering deforestation rates (Extended Data 

Fig. 8). Similarly, protection of forest (FRAG-P model) proportionally reduces the forest area 

that is prone to deforestation where the FRAG model still applies (simulated number of 

fragments scale with landscape size, Extended Data Figs. 9, 10). Although local landscape 

structures may differ due to local deforestation regimes, we found that the behaviour of the 

extended models collapses after suitable transformation in good approximation to that of the 

classical percolation model (FRAG). Reforestation and protecting large forest areas have 

nevertheless potentials to mitigate consequences of fragmentation (Extended Data Figs. 4, 

10). 

 

Our findings of the extended percolation models underpin the universality of fragmentation 

patterns close to the critical point. This is a general feature of critical phenomena: their large-

scale behaviour is independent of the underlying small-scale mechanisms
7,17,21

. Even though 

land use appears to be complex and diverse, our outcomes emphasize simple mechanisms to 

be sufficient for describing forest fragmentation structures at larger scales. This finding does 

not exclude the possibility that the empirical patterns detected here may have alternative 

explanations. Our combination of spatial analyses of a high-resolution forest cover map, 

simulation modelling and application of percolation theory provides a first step towards a 

simple explanation for the intriguing global patterns of tropical forest fragmentation.  
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Methods 

 

Used forest cover map and its analysis 

The analysis of global forest fragmentation is based on Hansen’s forest cover map
2
 that uses 

Landsat observation for year 2000 with a spatial resolution of 30 m × 30 m. We used a 

forest/non-forest classification threshold of 30% (minimum forest cover per pixel) in this 

study.  

 

The resulting image shows non-forested and forested pixels (original binary image files were 

processed as in ref. 29, ascii format, WGS-84 projection), whose connection to forest 

fragments is determined by its 4-pixel neighbourhood (open boundary conditions). For this, 

an extended cluster detection algorithm was used
29

. The area of a pixel in the WGS-84 

projection is calculated dependent on its geographical position
29

. As area calculation for every 

pixel is highly time consuming (224 billion pixels for land surface in the tropics), we pre-

calculated the area size of pixels along 256 latitudes.  

 

Please note that maps in Fig. 1 show the entire land area of the tropical belt. Maps were 
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created using R (ref. 31) and the package ‘rworldmap’ (ref. 32). 

 

Forest fragmentation model FRAG 

For simulation of fragmentation dynamics we used a landscape with Cmax cells of size s (30 m 

× 30 m). Cells can have two states (forested or deforested). We start the simulation with a 

fully forested area (all cells are in ‘forest’ state, total forest area is Amax = Cmax s). In each step 

(here, one year) some forest area is cleared assuming a constant deforestation rate d (% per 

year). That means, a certain number of forest cells (Cmax d) is randomly selected and assigned 

to the state ‘deforested’ in each year.  

 

For simplicity, cells do not regenerate back to forest in the FRAG model, so forest area is 

successively reduced within time until the entire forest area is cleared. However, deforestation 

rates used in FRAG can also be interpreted as net deforestation rates that result from 

reforestation and gross deforestation occurring at random sites. In detail, with d being the 

yearly gross deforestation rate (e.g., 0.51% per year derived from ref. 1 for tropical America) 

and r being the yearly reforestation rate (e.g., 0.14% per year derived from ref. 1 for tropical 

America), we obtained a yearly net deforestation rate of dnet = d ‒ r. Including random 

reforestation into our simulations thus shows that the effect of reforestation is already covered 

by the FRAG model (Extended Data Fig. 8a). If reforestation occurs exclusively at the border 

of forest fragments, small deviations can be observed (median deviations show 5% lower 

fragment numbers than for random reforestation).  

 

We analysed results of the fragmentation model using the same methods as for the analysis of 

the high-resolution forest cover map in terms of remaining forest area, fragment numbers and 

their mean size as well as the fragment size distribution (see ‘Analysis and statistics of 

tropical forest fragmentation’). Dynamics of fragment numbers scale with landscape size Cmax 

(total number of cells, Extended Data Fig. 9a). Normalized fragment numbers can thus be 

calculated by dividing the absolute number of fragments by the total number of cells (Cmax).  

The critical point pc is determined as the remaining forest area relative to landscape area Amax 

after which the spanning cluster no longer exists. The spanning cluster is defined as any large 

cluster which expands from one border of the landscape to an opposite side border (either 

north to south or east to west). Note that this simple fragmentation model corresponds to a 

dynamic version of the classical percolation model
10,11,22,23

.  
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Simulation of forest fragmentation at the continental scale 

Potential forest areas before forest clearing have been estimated for each continent using a 

map of vegetation biomes
33

 selecting for classified tropical forest area (only biomes of 

tropical and sub-tropical woodland). Potential areas have been calculated by remapping 

vegetation cover of gridded maps (0.5° × 0.5°) to an equidistant map (1 km × 1 km) using 

climate data operators (cdo)
34

.  

 

We simulated forest fragmentation dynamics by using for each continent the estimated 

potential forest cover (used cell size s = 30 m × 30 m) and deforestation rates derived from 

literature (Tab. 1). Extents of simulated continental areas for the fragmentation model were 

1,377 million ha for America, 806 million ha for Africa and 770 million ha for Asia-Australia 

(corresponding to Cmax of 15,300,205,636 cells for America, 8,955,555,556 cells for Africa 

and 8,555,555,556 cells for Asia-Australia). To determine the current forest area (in %) in 

Fig. 3a, we divided the observed forest areas (from remote sensing, Tab. 1) by the estimated 

potential forest areas. Gross deforestation rates (Tab. 1) and reforestation rates were derived 

from ref. 1 by dividing area change estimates of annual gross deforestation (2000-2010) and 

annual forest regrowth (2000-2010) by area estimates of forest cover (2000) for dry and 

humid tropical forests. Please note that potential forest area estimates can include 

uncertainties which can affect the determined fraction of current forest area (in %) for the 

forest cover map.  

 

Simulation scenarios of future forest fragmentation patterns 

We simulated four different scenarios (S1 to S4) to project future development of forest 

fragmentation (until 2050 for America, using FRAG, Extended Data Fig. 4): 

 

Scenario S1: Net deforestation rate is constant at dnet = 0.51% per year (ref. 1). This scenario 

assumes no reforestation.  

 

Scenario S2: Deforestation of d = 0.51% per year (ref. 1) is counterbalanced by reforestation 

of r = 0.14% per year (ref. 1). This results in an effective net deforestation rate of dnet = 0.37% 

per year.  

 

Scenario S3: Deforestation rate of 0.37% per year
 

(ref. 1) is reduced each year by 
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0.0012%/year
2
. This results in a net deforestation rate of dnet = a – bt, with t being years 

passed since the critical point, a = 0.37% per year and b = 0.0012%/year
2
. This scenario for 

tropical America was based on a 12-year observation of forest gain and forest loss (ref. 2, 

version v1.3). Derived absolute values of net forest area change were related to our simulated 

landscape area (Amax) and fitted by linear regression (slope = 0.0012, R
2
 = 0.013).  

 

Scenario S4: Deforestation of 0.37% per year
 
(ref. 1) is reduced each year by 0.01%/year

2
. 

This results in a net deforestation rate of dnet = a – bt (with a = 0.37% per year and b = 

0.01%/year
2
) with a turning point at which forest recovery exceeds deforestation. This 

scenario is similar to S3, but with a stronger decreasing trend of yearly deforestation rates.  

 

Projections of future fragmentation for year 2050 started from the critical point of percolation 

using the FRAG model (as a simplification). A time step corresponds to a constant reduction 

of forest area per year. Projected values (of fragment numbers and mean size in 2050) for 

different deforestation scenarios (Fig. 3c) were compared to observational values from remote 

sensing (Tab. 1, factors shown in Extended Data Fig. 4). The fragmentation dynamics (in 

terms of deforestation rate, forest cover, fragment numbers and mean fragment size) for each 

scenario are shown in Extended Data Fig. 4 (absolute values can be found in Extended Data 

Fig. 4e).  

 

Forest fragmentation model FRAG-B  

In addition, we analysed a second version of the fragmentation model in order to test for more 

complex deforestation patterns. To this end, a probability dborder to clear only forested cells at 

the border of a forest fragment has been introduced. When dborder = 0, forested cells are 

cleared randomly (FRAG model version). When dborder = 0.5, 50% of the deforestation is 

restricted to fragment borders while the remaining 50% is still deforested all over the place. 

When dborder = 1, only cells at the border of forest fragments are cleared (with random site 

selection for deforestation in the first time step). We analysed the result of the FRAG-B model 

similar to FRAG (see ‘Analysis and statistics of tropical forest fragmentation’). Dynamics of 

fragment number also scale with landscape size Cmax (Extended Data Fig. 9b). Thus, 

normalized fragment numbers can again be calculated by dividing the absolute number of 

fragments by the total number of cells (Cmax).  

 

Gross deforestation rates used in the FRAG-B model can again be interpreted as net 
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deforestation rates that result from reforestation at random sites together with border gross 

deforestation (similar to FRAG, Extended Data Fig. 8b). In this case, the probability, that 

deforestation occurs at the border of forest fragments (dborder), changes to approximately 

dborder,net = (dborder d ‒ r)/(d ‒ r), with d being the yearly gross deforestation rate (e.g., 0.51% 

per year in America
1
) and r being the yearly reforestation rate (e.g., 0.14% per year in 

America
1
). Small deviations can be attributed to the dynamic change of border area of 

fragments during the simulation. In contrast, reforestation is fully captured by our FRAG-B 

model if reforestation occurs with the same probability dborder at the border of forest fragments 

as deforestation does.  

 

In order to test for a full range of border deforestation, we simulated a forest landscape (Cmax 

= 10
6
 cells) and varied dborder from 0 to 1 in steps of 0.1. Between dborder = 0.9 and dborder = 1.0 

we tested model behaviour for detailed values: dborder = 0.925, 0.95, 0.975, 0.98, 0.985, 0.99, 

and 0.995 (because critical points and power law exponents of fragment sizes drop between 

dborder = 0.9 and dborder = 1.0). We focused our analysis on the critical points and the fitted 

power law exponents of fragment size distributions for each simulation (Extended Data Fig. 

6) with the following sample sizes of fragments: n = 29,788 (dborder = 0), n = 30,195 (dborder = 

0.1), n = 29,020 (dborder = 0.2), n = 28,131 (dborder = 0.3), n = 31,117 (dborder = 0.4), n = 30,506 

(dborder = 0.5), n = 30,733 (dborder = 0.6), n = 34,182 (dborder = 0.7), n = 35,325 (dborder = 0.8), n 

= 43,045 (dborder = 0.9), n = 44,997 (dborder = 0.925), n = 45,964 (dborder = 0.95), n = 45,577 

(dborder = 0.975), n = 44,415 (dborder = 0.98), n = 45,692 (dborder = 0.985), n = 43,806 (dborder = 

0.99), n = 38,875 (dborder = 0.995), n = 1,278 (dborder = 1.0) fragments.  

 

Forest fragmentation model FRAG-P 

A third version of the fragmentation model includes protected forest areas. To this end, a 

fraction fprotected of landscape area (in total fprotected Amax) is preserved against deforestation. 

When fprotected = 0, forest area is cleared randomly (FRAG model). When fprotected = 0.5, 50% of 

forest area is protected while the remaining 50% are still deforested randomly. When fprotected 

= 1, no forest area will be cleared. The protected forest area is distributed among rectangular 

forest patches (of 10,000 ha in size) that are randomly distributed across the landscape. In 

order to reach the total protected area exactly (fprotected Amax), also a few forest patches of 

different size are allowed for protection (e.g., if protected forest patches overlap or are placed 

too close to the landscape boundaries).  
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Conceptually, protecting large forest fragments means preserving certain size classes in the 

fragment size distribution (e.g., in our FRAG-P model the size class [10
4
; 10

5
) ha). Thus, 

protection of one large fragment is equivalent to excluding this fragment from the study area 

which is prone to deforestation (e.g., similar to FRAG). Because the normalized number of 

fragments (normalization means dividing by the total number of cells Cmax) is independent of 

landscape size, we obtain a behaviour that is captured by FRAG also for smaller landscape 

areas (Extended Data Fig. 9). This property reduces the extrapolated number of forest 

fragments proportionally by (1 – fprotected) (Extended Data Fig. 10).  

 

In order to test for a range of protected forest area, we simulated different fractions of 

protected areas (fprotected = 0.1 and 0.5, for landscape sizes compared to tropical America, i.e. 

Cmax = 15,300,205,636 cells). We focused our analysis on the number of forest fragments 

(Extended Data Fig. 10).  

 

Analysis and statistics of tropical forest fragmentation 

Forest fragments have been detected by applying an extended cluster detection algorithm
29

. 

This algorithm labels each single fragment of cells based on the direct four neighbours per 

cell (see section ‘Used forest cover map and its analysis’). The mean fragment size of a 

landscape is calculated by summing up their sizes divided by the number of fragments 

(unweighted mean including the spanning cluster).  

 

We calculated the fragment size distribution, i.e. the number of fragments per fragment size 

class. In order to describe its form, we applied multinomial maximum likelihood estimation of 

logarithmically binned data to fragment sizes published by Virkar and Clauset
35

 (using the 

Matlab package provided online). We fitted the frequency of fragment sizes to a power law 

distribution to determine the scaling exponent (N(f) ~ f 
-τ
 with N(f) as the number of fragments 

of size f and τ as the scaling exponent). For logarithmic binning, we used size classes [10
1
; 

10
2
), [10

2
; 10

3
) … [10

8
; 10

9
) in ha. We excluded fragments smaller than 10 ha for the fit. 

Standard errors
35

 for each fitted exponent were calculated by bootstrapping (1,000 

repetitions). Goodness of fit was evaluated by using Pearson’s correlation coefficient (R) 

between predicted and empirical cumulative distributions (both logarithmic; using raw data 

including also empirical and simulated fragments smaller than 10 ha). Similar to fragment 

sizes, we calculated perimeters (edge length) of detected forest fragments for analysing and 

fitting the fragment perimeter distribution (N(l) ~ l
-κ

 with N(l) being the frequency of 
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fragments with perimeter l and κ being the scaling exponent). For logarithmic binning, we 

used perimeter classes [10
3
; 10

4
), [10

4
; 10

5
) … [10

9
; 10

10
) in m and excluded fragment 

perimeters smaller than 1,000 m for the fit (equivalent to approximately 10 ha of fragment 

size). Standard errors
35

 were again derived for each fitted exponent by bootstrapping (1,000 

repetitions). Goodness of fit was similarly evaluated by using Pearson’s correlation 

coefficient (R) between predicted and empirical cumulative distributions (both logarithmic; 

using raw data including also empirical and simulated fragment perimeter smaller than 1,000 

m).  

 

We further determined the fractal dimension df based on subsequently grouping 30 m × 30 m 

cells of the vegetation map to boxes of bf = 2
1
, 2

2
, 2

3
, …, 2

8
 cells (box counting method

36,37
). 

For each box we determined how many cells include forest. When at least one cell per box is 

occupied by forest, we mark the entire box as forested. By this, a map of coarser resolution 

than the original map (with s = 30 m × 30 m resolution) is created. The fractal dimension is 

then calculated by relating the inverse of bf to the number of boxes including forest on the 

landscape of coarser resolution. This relationship follows a power law whose scaling 

exponent represents the fractal dimension. We fitted this relationship on log-log axes by using 

ordinary least squares regression and calculated the corresponding coefficient of 

determination R². We calculated the fractal dimension df for the high-resolution vegetation 

map (Tab. 1, with R² values of approximately 1 for each continent) and compared them to the 

predicted dimension df = 1.89 of percolation theory
11

. Note that deviations in the exponent τ 

of the fragment size distribution trace back to the finite area of the continents while the 

calculation of fractal dimension is not affected by the finite area.  

 

The large extent of our simulated forest landscapes retains variations of results for replicate 

simulations low. We calculated the coefficient of variation (standard deviation σ divided by 

mean value µ, CV = σ/µ) from 10 repeated simulations for each time step. Finally, we 

determined the median CVmedian as an aggregated statistic for all time steps for the number and 

mean size of fragments. For the fragment size distribution, we only calculated the CV at the 

critical point for each class of fragment sizes and determined the median CVmedian for all size 

classes (see above for details on size classes). For fragment number and mean size, median 

CVmedian were below 0.00004 for all three continents (using FRAG, CVmedian decreased in 

general during the simulation time). Median CVmedian among size classes of the fragment size 

distribution (at the critical point) were less than 0.0062 (CVmedian decreased in general with 
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smaller size classes). Similar results were obtained for FRAG-B (0.00004 and 0.0036 for 

dborder = 0.9, landscape area of America) and FRAG-P (0.00003 and 0.448 for fprotected = 0.1, 

landscape area of America). Because stochasticity did not translate into visible effects, we 

visualized only one simulation run in Fig. 2, Fig. 3 and Extended Data Figs. 3–10 and 

provided absolute values of one simulation run in Extended Data Fig. 4e.  

 

Visualisation of fragmentation patterns 

We gathered snapshots of fragment size distributions and spatial patterns for each simulated 

year in our FRAG and FRAG-B model for America in MPG-files (Supplementary Video 1, 2) 

and figures (Fig. 2, Extended Data Figs. 3, 5). For the fragment size distribution, green bars 

show the simulation results (FRAG or FRAG-B) and the black line shows the observed size 

distribution (from remote sensing) for the tropical forest in America. We used logarithmic 

binning of fragment size classes [10
1
; 10

2
), [10

2
; 10

3
) … [10

9
; 10

10
) in ha. For graphical 

purposes only, we additionally visualized size classes [10
-1

; 10
0
) and [10

0
; 10

1
). Remaining 

forest area is provided within the barplot of the videos. For the shown map (selected sub-area 

of 900 ha was used for Extended Data Figs. 3 and 5 as well as for Supplementary Video 1 and 

2, selected sub-area of 225 ha was used for Fig. 2 for graphical purposes), each fragment is 

coloured according to its size. Six size classes were chosen with the following colour codes: 

size < 0.4 ha (light blue), 0.4 ha < size < 2 ha (yellow), 2 ha < size < 9 ha (light magenta), 9 

ha < size < 42 ha (light green), 42 ha < size < 195 ha (dark magenta), size > 195 ha (dark 

green). White cells denote cleared sites.  

 

Code availability 

The extended cluster detection software and the simulation models are available upon request 

(corresponding author).  

 

Data availability 

Data of observed fragments size and perimeter distributions and of simulation studies are 

available upon request (corresponding author).  
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Extended Data Figures  

 

 
 

Extended Data Figure 1: Continental-scale fragment perimeter distribution of tropical 

and sub-tropical forest. Observed fragment perimeter distribution (orange dots; fragment 

perimeters > 1,000 m) for a, America (n = 55.5 million fragments), b, Africa (n = 44.8 million 

fragments) and c, Asia-Australia (n = 30.5 million fragments), and fitted power law with 

exponent κ (solid black line). Forest fragments were estimated from Hansen’s forest cover 

map
2
 (see Methods for details).  

 

 

 
 

Extended Data Figure 2: Illustration of the concept of classical percolation theory. a, A 

landscape occupied by 90% randomly and independently distributed forest cells (green, p = 

0.9) is dominated by one large cluster. b, For values of p larger than the percolation threshold 

(p = 0.6 > 0.59) a continuous path from two opposite side borders exists (yellow path within 

the spanning cluster). c, Below the percolation threshold (here, p = 0.55 < 0.59) larger clusters 

emerge but no spanning cluster can be detected. d, A landscape occupied by 20% forest 

shows small unconnected clusters. Landscape size is 20 × 20 cells.  
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Extended Data Figure 3: Dynamics of tropical forest fragmentation in America using 

FRAG. a, Spatial patterns of fragments for different snapshots in time and b, fragment size 

distributions (green bars: FRAG, line: observation from remote sensing). The critical phase at 

which the spanning fragment disappears is indicated as ‘critical’. For each phase a map of a 

selected sub-area of 900 ha is shown (FRAG, cleared sites are white and colours indicate 

fragment size, see Methods for details). For graphical purposes only, fragments < 10 ha are 

also shown. A video is provided (Supplementary Video 1).  
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Extended Data Figure 4: Dynamics of fragmentation scenarios projected until 2050. 
Dynamics of deforestation rate (% per year related to landscape size), forest cover (%), 

number of fragments and mean fragment size (ha) in America projected until 2050 using 

FRAG. a, Scenario S1 assumes constant deforestation without reforestation while b, scenario 

S2 considers added reforestation. c, Scenario S3 assumes a yearly increasing reduction of 

deforestation while d, in Scenario S4 a stronger yearly reduction leads to a turning point with 

net reforestation. See Methods for details. e, Comparison of observed (Tab. 1) and projected 

fragment numbers (rounded) and mean fragment size.  
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Extended Data Figure 5: Dynamics of tropical forest fragmentation in America using 

FRAG-B. a, Spatial patterns of fragments for different snapshots in time and b, fragment size 

distributions (green bars: FRAG-B, dborder = 0.995, line: observation from remote sensing). 

The critical phase at which the spanning fragment disappears is indicated as ‘critical’. Shown 

is for each phase a map of a selected sub-area of 900 ha (FRAG-B, cleared sites are white and 

colours indicate fragment size, see Methods for details). For graphical purposes only, 

fragments < 10 ha are also shown. A video is provided (Supplementary Video 2).  

 

 

 

 

 

 
 

Extended Data Figure 6: The effect of border deforestation on fragmentation dynamics. 
a, Critical points and b, fitted power law exponents of fragment sizes for different 

probabilities (dborder) of deforestation restricted to the border of forest fragments (FRAG-B 

model for landscape size of Cmax = 10
6
 cells). Each point in b, represents one power law fit 

based on n = 29,788 (dborder = 0) to n = 1,278 (dborder = 1.0) fragments (see Methods for 

detailed values). Calculated R² values of fits are approximately 1 for the entire range of dborder 

probabilities (see Methods).  
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Extended Data Figure 7: Power law exponents fitted to simulated fragment size 

distributions. a, For different landscape sizes Cmax based on the FRAG model and b, 

comparison between random (FRAG) and border deforestation (FRAG-B, dborder = 0.5 and 

dborder = 0.9). In b, landscape size was Cmax = 10
10

 cells. In both panels we show only results 

for fits with correlation coefficients R² ≥ 0.9. The grey horizontal line shows the exponent 

predicted by percolation theory.  

 

 

 
 

Extended Data Figure 8: Dynamics of fragment numbers comparing implicit and 

explicit modelling of reforestation. a, We assume a gross deforestation rate of d = 0.51% per 

year and a reforestation rate of r = 0.14% per year for America
1
 (with random and 

independent selection of sites for deforestation and reforestation, blue dots). This model 

version is equivalent to the original FRAG model assuming a net deforestation rate of dnet = 

0.37% per year (green line). b, The same scenario (green line as in a,) but now explicit 

reforestation exclusively occurs at the border of forest fragments (blue dots).  
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Extended Data Figure 9: Scaling of fragmentation dynamics. Dynamics of forest fragment 

numbers (normalized by landscape size Cmax) in America using a, FRAG and b, FRAG-B 

(dborder = 0.5) for different landscape sizes. The pattern is independent of landscape size.  

 

 

 

 

 
 

Extended Data Figure 10: Dynamics of the number of forest fragments without (FRAG) 

and with considering protected forest areas (FRAG-P). Simulations with the FRAG-P 

model account for 10% (fprotected = 0.1) and 50% (fprotected = 0.5) of the landscape area to be 

protected while the remaining forest area is prone to deforestation (FRAG). Forest areas 

affected by deforestation in both models were simulated using a deforestation rate of d = 

0.51% per year in America
1
.  

 


